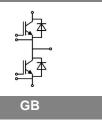


SEMITRANS[®] 3

SPT IGBT Module

SKM 200GB128D

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz

Absolut	e Maximum Ratings	T _c =	25 °C, unless otherwise	specified
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 150 °C		1200	V
I _C	T _j = 150 °C	T _c = 25 °C	300	А
		T _c = 80 °C	220	А
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}$		300	А
V _{GES}			± 20	V
t _{psc}	V _{CC} = 600 V; V _{GE} ≤ 20 V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse	Diode		·	
I _F	T _j = 150 °C	T _{case} = 25 °C	190	А
		T _{case} = 80 °C	130	А
I _{FRM}	I _{FRM} = 2x I _{Fnom}		300	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1440	А
Module	_		_	
I _{t(RMS)}			500	А
T _{vj}			- 40 + 150	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$		4,5	5,5	6,45	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,2	0,6	mA
V _{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9	1,05	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		6	8	mΩ
		T _j = 125°C		8	10	mΩ
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,35	V
		T _j = 125°C _{chiplev.}		2,1	2,55	V
C _{ies}				13		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		2		nF
C _{res}				2		nF
Q _G	V _{GE} = -8V- +20V			1700		nC
R _{Gint}	T _j = 25 °C			2,5		Ω
t _{d(on)}				125		ns
t,	$R_{Gon} = 7 \Omega$	V _{CC} = 600V		50		ns
E _{on}	di/dt = 4800 A/µs	I _C = 150A		18		mJ
t _{d(off)}	$R_{Goff} = 7 \Omega$	T _j = 125 °C		620		ns
t _f		V _{GE} = ±15V		55		ns
E _{off}		L _s = 20 nH		15		mJ
R _{th(j-c)}	per IGBT				0,095	K/W

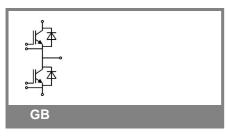
SEMITRANS[®] 3

SPT IGBT Module

SKM 200GB128D

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	Diode						
$V_F = V_{EC}$	I _{Fnom} = 150 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V	
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
r _F		T _j = 25 °C		6	7,8	mΩ	
I _{RRM}	I _F = 150 A	T _i = 125 °C		190		А	
Q _{rr}	di/dt = 4800 A/µs	,		24		μC	
E _{rr}	V_{GE} = -15 V; V_{CC} = 600 V			8		mJ	
R _{th(j-c)D}	per diode				0,25	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

Features


- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

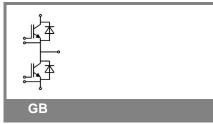
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

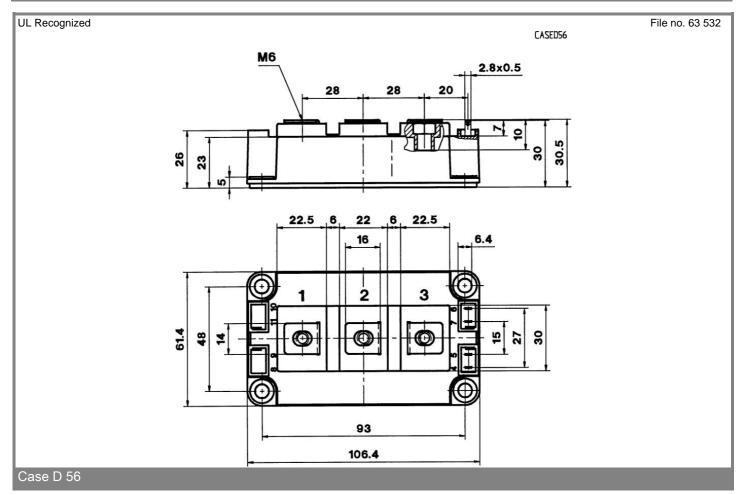
11-09-2006 SEN

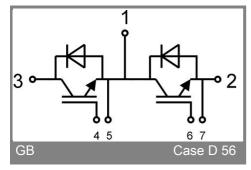
Z _{th} Symbol	Conditions	Values	Units
Z R _i			
R _i , , , , , , , , , , , , , , , , , , ,	i = 1	65	mk/W
R _i	i = 2	22	mk/W
R _i	i = 3	6,8	mk/W
R _i	i = 4	1,2	mk/W
tau _i	i = 1	0,0744	s
tau _i	i = 2	0,0078	s
tau _i	i = 3	0,0016	s
tau _i	i = 4	0,0002	S
Z _{Ri} th(j-c)D			
R _i	i = 1	155	mk/W
R _i	i = 2	71	mk/W
R _i	i = 3	21	mk/W
R _i	i = 4	3	mk/W
tau _i	i = 1	0,0716	s
tau	i = 2	0,0056	s
tau _i	i = 3	0,0042	s
tau _i	i = 4	0,0002	s

Features

Homogeneous Si


SKM 200GB128D


SPT IGBT Module


- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders f_{sw} up to 20kHz

6